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Calculation of effective Hamiltonians for renormalized or non-Hamiltonian systems

Dorit Ron
Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel

Robert H. Swendsen
Physics Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213

~Received 30 January 2001; published 25 May 2001!

We develop a method for calculating renormalized Hamiltonians based on the Brandt-Ron representation of
renormalization-group transformations. Our approach allows us to make a stable calculation for larger sets of
renormalized coupling constants than either the Swendsen or the Gupta-Cordery methods, thus reducing the
effects of truncation in renormalization-group calculations. The generality of the Brandt-Ron representation
also makes it suitable for analyzing a broader class of models including driven diffusive systems. Another
advantage of our approach is that it contains internal criteria that provide information on the error involved in
truncation approximations.
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I. INTRODUCTION

In the renormalization-group~RG! theory of critical phe-
nomena, the determination of critical properties is reduce
the calculation of trajectories~sequences of renormalize
Hamiltonians! near a fixed point of the renormalization
group transformation. Although some methods of compu
tion avoid the problem of directly calculating the renorm
ized Hamiltonians to obtain critical exponents@1#, an explicit
calculation is required for complete information. For Mon
Carlo renormalization-group~MCRG! calculations, severa
methods have been created for this purpose@2#. In 1983,
Swendsen@3# used a comparison between two methods
calculating correlation functions, one of which explicit
used the values of the renormalized couplings. Since t
gave the same answers only when the correct renorma
couplings were used, this provided a method for determin
their values. In 1984, Gupta and Cordery@4# developed a
very elegant approach, which had several advantages
Swendsen’s technique. Their simulation involved both
original and the renormalized spins in a novel ensemble,
all correlation functions vanished when they had found
correct renormalized couplings.

Despite the successes of these two approaches, they
have limitations on the number of couplings that can be c
culated and the accuracy that can be attained. In this pa
we introduce a different approach to the problem, which
lows us to compute more interactions with higher accur
than either of the two earlier approaches.

In addition to improving the calculation of renormalize
Hamiltonians within the context of renormalization-grou
theory, our method also allows us to investigate no
Hamiltonian dynamical systems from an unusual viewpo
Since the static properties of non-Hamiltonian dynami
systems can be analyzed directly with our methods, we
calculate the~seemingly paradoxical! Hamiltonian represen
tation of non-Hamiltonian systems. There is actually no c
tradiction or paradox involved in these statements. The st
properties of any dynamical system can always, in princip
be described by a Hamiltonian. It is a separate question a
1063-651X/2001/63~6!/066128~7!/$20.00 63 0661
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whether that Hamiltonian has convenient properties for
in further analysis. For example, to be useful for an R
analysis, a renormalized Hamiltonian should be sho
ranged. One model for which we have done calculatio
turns out to be short-ranged, while others are known to c
tain long-ranged couplings@5#.

To introduce our approach, consider the Ising model
spins on a lattice that take on the values of11 and21. The
Hamiltonian for such a model is usually written in the for

H5(
i

KiSi , ~1!

where theSi ’s are various products of the spins. For e
ample, the nearest-neighbor operator is given by

Snn5 (
^ j ,k&

sjsk ~2!

and the sum runs over all nearest-neighbor pairs.
Although the Hamiltonian representation appears to

very general, it is easy to demonstrate that it is insufficien
represent all dynamical interactions. Consider a translat
ally invariant, two-dimensional model of Ising spins with n
interactions extending beyond the nearest neighbors. Le
conditional probability distribution of any chosen spin d
pend only on the values of its four neighboring spins. Let
probability of the central spin taking on the value11 be
given by

P1
4 ~s1 ,s2 ,s3 ,s4!55

u4 if S54

u2 if S52

1/2 if S50

~12u2! if S522

~12u4! if S524,

~3!

where S5( l 51
4 sl . In general,u2 and u4 can take on any

values between 0 and 1. However, a Hamiltonian descrip
©2001 The American Physical Society28-1
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DORIT RON AND ROBERT H. SWENDSEN PHYSICAL REVIEW E63 066128
of this model is restricted to the nearest-neighbor sum gi
in Eq. ~2!, with a single coupling constantK. The values of
u2 andu4 are then given by

un5@11exp~22nK!#21, n52,4 ~4!

and they are not free to vary independently. For given val
of u2 andu4, the model can be represented by a Hamilton
if and only if there exists a value ofK that reproduces thos
values through Eq.~4!.

Note that a Hamiltonian representation of this dynam
cannot be saved by introducing a four-spin interaction.
though a four-spin interaction could be placed in the set o
central spin and its four neighbors, translational invarian
would demand that it also be placed in other positions t
would require the central spin to be influenced by spins o
side this group, contradicting the assumptions of the mo

As we will show below, the Brandt-Ron representati
@6# is more general than the Hamiltonian representation,
is easily able to deal with non-Hamiltonian dynamics wit
out further approximation. This capability will be used
analyze such systems in future work.

In the course of analyzing the renormalized configu
tions, we are also able to test the consistency of sets of re
malized coupling constants previously generated by Swe
sen and Gupta-Cordery, as well as developing a differ
method for calculating renormalized coupling constants fr
the Brandt-Ron representation.

II. BRANDT-RON REPRESENTATION
OF INTERACTIONS

The essential idea behind the Brandt-Ron representa
is to describe the interactions between spins by calcula
the conditional probability of given spin taking on the val
of 11 when the explicit values of a set of neighboring sp
are specified. We shall follow the notation of Brandt and R
and call a specific set of neighboring spins and their value
‘‘neighborhood.’’ The conditional probability that the centr
spin will take on the value of11, given the specific value
of the spins in its neighborhood, is denoted
P1

m(s1 ,s2 , . . . ,sm), wherem is the number of spins in the
particular neighborhood under consideration. Since the se
sites in a neighborhood will be taken to have the symme
of the lattice,m may take on values of 4~nearest neighbors!,
8 ~nearest and second-nearest neighbors!, 12, 20, etc. For all
the cases we consider,m will uniquely determine the set o
sites in a neighborhood, while the explicit values taken on
those spins are necessary to complete the specification
particular neighborhood. All neighborhoods that are rela
by an exact symmetry operation~rotation, reflection, or spin
inversion! are grouped together, since those related by ro
tion or reflection have identical values ofP1

m and those re-
lated by spin inversion simply changeP1

m to 12P1
m . In the

example ofP1
4 given in Eq.~3!, all neighborhoods with three

equal spins are grouped together, as are the two neigh
hoods with all spins up and all spins down.

From a Monte Carlo~MC! simulation on a given fine
grid, Brandt and Ron generated a sequence of renorma
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~block spin! configurations, using the majority-rule transfo
mation on 232 blocks, although the method can be us
equally well with any other RG transformation. For eve
spin in every generated renormalized configuration, the s
rounding neighborhood was identified and the accumula
number of its total occurrences and that for which the cen
spin was11 were updated. The desiredP1

m values easily
follow.

The P1 table provides a very general representation
the interactions. For example, there are a total of 314 dist
neighborhoods on the nearest 12 sites shown in Fig. 1. H
ever, there are only five terms in the most general Ham
tonian that can be defined within the limits of these 12 sit

In the rest of the paper, most of the calculations will re
to the sites in a 20-spin neighborhood shown in Fig.
Brandt and Ron used a total of 80 384 neighborhoods in t
analysis of the renormalized interactions of the tw
dimensional Ising model simulated at the critical point whe
K50.440 686 8. This large number of neighborhoods com
from the 314 12-spin neighborhoods, multiplied by the8

different arrangement of spin values on the additional ei
sites. For simplicity in programming, no symmetries we
used for the additional eight sites to reduce the total num
of neighborhoods, which are not all distinct.

Naturally, different neighborhoods occur with differin
probabilities. Table I lists a great deal of information for th
12 most common neighborhoods, which together account
over 50% of the observations at the critical point. The c
umn labeled ‘‘w’’ gives the relative frequency of each neigh
borhood. These neighborhoods are all composed of mo
positive spins. The left column identifies which spins out
the 20-spin neighborhood shown in Fig. 1 take on the va
21. Observe that none of the neighborhoods has more
two spins out of 20 with the value21 and that the mos
common neighborhood contains only positive spins, and
curs in nearly one-quarter of the measurements.

Since the specification of a neighborhood begins with
choice of a finite set of spins, a truncation of the full set
renormalized interactions is inevitable. If the error caused
this truncation falls off rapidly as the set of spins used for
neighborhoods is increased, the model is said to pos
‘‘near locality’’ in the terminology of Brandt and Ron. In
their work, Brandt and Ron used a sophisticated algorit
that constructed an appropriate set of growing neighborho
for a given degree of accuracy during the course of a Mo
Carlo simulation@6#. We will use their results for the set o

FIG. 1. The 24-spin neighborhood surrounding a spins0.
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TABLE I. The P1’s of the first renormalized level obtained by Gupta-Cordery~GC! and by Brandt-Ron
~BR! for the 20-spin neighborhood shown in Fig. 1.

Neighborhood First renormalized level
21 at: GC BR BR-12 BR-21 w

0.97096(38) 0.970456(1) 0.970380(31) 0.970425~80! 0.2374
13 0.97094(34) 0.970420(2) 0.970362(27) 0.970395~66! 0.1044
9 0.97046(33) 0.970332(3) 0.970240(26) 0.970275~61! 0.0400
1 0.87045(88) 0.868889(6) 0.869444(68) 0.868790~132! 0.0323
5 0.95839(34) 0.956307(1) 0.957087(27) 0.956496~63! 0.0301
6,13 0.95954(31) 0.958618(6) 0.958835(24) 0.958737~60! 0.0168
1,5 0.83144(74) 0.829299(14) 0.828858(55) 0.828954~135! 0.0104
9,13 0.97054(29) 0.970299(5) 0.970255(24) 0.970310~58! 0.0104
9,14 0.97053(29) 0.970301(7) 0.970320(23) 0.970281~51! 0.0104
9,15 0.97044(28) 0.970299(6) 0.970222(22) 0.970245~47! 0.0104
9,16 0.97044(28) 0.970306(2) 0.970222(22) 0.970245~47! 0.0104
13,14 0.97109(31) 0.970625(3) 0.970493(26) 0.970647~60! 0.0083
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20-spin neighborhoods and the values of the 80 384P1’s
that they measured.

Because Brandt and Ron provided data that demons
near locality for these neighborhoods, we know that trun
tion to 20-spin neighborhoods introduces a very small er
For example, consider theP1’s for a sequence of neighbor
hoods of increasing size with all spins having the value11.
The values are

P1
4 50.967 040

P1
8 50.970 422, P1

8 2P1
4 50.003 382;

P1
1250.970 446, P1

122P1
8 50.000 024;

P1
2050.970 456, P1

202P1
1250.000 010;

P1
2450.970 460, P1

242P1
2050.000 004.

The changes inP1
m rapidly become smaller asm is increased,

with the difference between a 12-spin neighborhood an
20-spin neighborhood being only one part in 105. This is
consistent with the assumption of near locality, and justifi
the assumption that 20-spin neighborhoods are sufficien
the purposes of this paper.

III. COMPARISON OF MEASURED P¿’S
WITH MCRG CALCULATIONS

The data we will use for theP1’s are taken from the work
of Brandt and Ron. The particular results were genera
using three Wolff@7# cluster updates between each measu
ment of data from a configuration for 53107 measurements
on a 1283128 lattice. Three cluster flips were chosen b
cause that corresponds roughly to flipping every spin in
lattice once on average. It should be noted that theP1’s are
local quantities that do not depend on the establishmen
global equilibrium, which makes them particularly easy
calculate to high accuracy. Any critical slowing down due
06612
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the algorithm used will affect the determination of the fr
quencies of observing each neighborhood,wj , rather than
the P1’s.

Given a model with a Hamiltonian representation d
scribed by Eq.~1!, the P1’s can be calculated directly from
the values of the coupling constants using the equation

P15@11exp„22H~s!…#21, ~5!

wheres is the set of spins that take on the values specified
the neighborhood.

In Tables I and II, we begin our comparison with th
Gupta-Cordery results. The neighborhoods are associ
with the 20-spin neighborhood shown in Fig. 1. For ea
neighborhood, all spins are positive except for the spins
the specified locations, which are negative. The columns
beled ‘‘GC’’ were generated from 12 out of the 14 Gupt
Cordery coupling constants, using Eq.~5!. We neglected the
two Gupta-Cordery coupling constants that fell outside
range of our 20-spin neighborhoods. The columns labe
‘‘BR’’ were taken from the Brandt-Ron results.

Looking at the columns for the first renormalized level
Table I, the similarity of the results from the Gupta-Corde
and Brandt-Ron calculations is immediately apparent. Ho
ever, there is also a striking systematic difference betw
the results in that everyP1 generated from the Gupta
Cordery couplings are systematically higher than those m
sured by Brandt and Ron. We conclude that Gupta and C
ery succeeded in doing an excellent calculation of
effective renormalized couplings within their truncation, b
the overall strength of those couplings is systematically
high, at least when the additional two couplings are n
glected. These values for the renormalized couplings co
spond to a model that is slightly off-critical hypersurfac
with too low an effective temperature. To test the possi
effect of adding the two extra couplings specified by Gu
and Cordery, we have calculated theP1 for a 24-spin neigh-
borhood of all spins taking the value11 and obtained
0.971 956. The corresponding Brandt-Ron result
8-3
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TABLE II. The P1’s of the second renormalized level obtained by Gupta-Cordery~GC! and by Brandt-
Ron ~BR! for the 20-spin neighborhood shown in Fig. 1.

Neighborhood Second renormalized level
21 at: GC BR BR-12 w

0.97199(86) 0.969912(2) 0.969902(59) 0.2417
13 0.97187(76) 0.969888(6) 0.969870(52) 0.1060
9 0.97146(73) 0.969893(3) 0.969821(49) 0.0412
1 0.87806(186) 0.873739(5) 0.874432(122) 0.0333
5 0.95757(78) 0.953144(1) 0.954183(52) 0.0315
6,13 0.95929(71) 0.955914(7) 0.956248(49) 0.0166
1,5 0.83041(166) 0.824308(5) 0.824751(102) 0.0105
9,13 0.97153(65) 0.969901(6) 0.969872(44) 0.0103
9,14 0.97150(64) 0.969904(3) 0.969919(43) 0.0103
9,15 0.97135(63) 0.969902(7) 0.969789(42) 0.0103
9,16 0.97135(63) 0.969904(5) 0.969789(42) 0.0103
13,14 0.97189(69) 0.970073(9) 0.969920(48) 0.0085
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0.970 460, showing an even larger discrepancy. A sim
deviation was observed also for the 24-spin neighborhoo
all spins11 except one negative spin at site 13: Gupta a
Cordery predicted 0.971 733 while Brandt-Ron measu
0.970 390.

The columns in Table II for the second renormalized le
are consistent with this interpretation. Again the Gup
CorderyP1’s are quite close to the Brandt-Ron values, b
are systematically too high. Since the deviation from critic
ity corresponds to a relevant direction, the deviations in
second renormalized level are expected to be larger, whic
observed to be the case. The larger statistical errors are
to the smaller grid size obtained after two RG transform
tions.

Apart from the small deviations of the Gupta-Corde
couplings from criticality, the good agreement with th
Brandt-Ron results demonstrates an encouraging con
tency. However, for a more complete comparison, we n
to calculate the renormalized coupling constants from
measuredP1’s. This will be done in the following sections

IV. CALCULATION OF COUPLINGS FROM P¿’S

In order to invert Eq.~5! to calculate the renormalize
couplings from theP1’s, we need to deal with the fact tha
there are many moreP1’s than there are renormalized co
plings. Our procedure will be to determine renormalized c
plings by minimizing the sum of the weighted deviations
the P1’s calculated from Eq.~5! from those measured b
Brandt and Ron.

For convenience, instead of using theP1’s directly, we
define a cost function in terms of the quantities

Hj52~1/2!ln@~12Pj !/Pj #, ~6!

where the indexj refers to thej th entry in the corresponding
P1 table. This choice simplifies the minimization process
merely solving a linear system of equations. Our cost fu
tion is then given by
06612
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1

4M (
j

S Hj2(
i

KiSi j D 2Y @dHj #
2, ~7!

where theKi ’s are the desired coupling constants, theSi j ’s
are the various products of spins evaluated for thej th neigh-
borhood, anddHj is the standard deviation ofHj , which is
related to the standard deviation ofPj through the equation

dHj5~1/2!@P j~12P j !#21dPj . ~8!

SincePj is calculated by averaging the values of the ce
tral spin for each neighborhood, its error is governed by
binomial distribution, so that

~dPj !
25Pj~12Pj !/M j , ~9!

whereM j is the total number of instances of neighborhooj
observed during the simulation. Since we have one neigh
hood surrounding every spin in every configuration, the to
number of occurrences of all neighborhoods is

M5(
j

M j5CL2, ~10!

whereC is the total number of configurations andL2 is the
number of spins~and neighborhoods! in each configuration.
Expressing this in terms of the relative frequency of ea
neighborhood,wj5M j /M , we arrive at the following ex-
pression for the cost function:

F5(
j

S Hj2(
i

KiSi j D 2

wj Pj~12Pj !. ~11!

V. COMPARISON OF CALCULATED RENORMALIZED
COUPLINGS WITH MCRG CALCULATIONS

All methods for calculating renormalized couplings ne
essarily involve some sort of truncation. To investigate
effective truncation, we begin the comparison with the ea
calculation by Swendsen involving a rather severe trunca
8-4
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CALCULATION OF EFFECTIVE HAMILTONIANS FOR . . . PHYSICAL REVIEW E 63 066128
to only 6-coupling constants. Table III gives both Swen
sen’s values for the couplings and our results for the sa
truncation found by minimizing the cost function~11! de-
scribed in the preceding section. The overall agreemen
quite good, although the new results are much more accu
In all cases, the differences are within one or two stand
deviations of the original calculation.

Table IV shows a similar comparison with a more e
tended set of 12-coupling constants calculated by Gupta
Cordery. In addition to using more couplings than Swend
in their analysis, Gupta and Cordery also introduced an
proved method that produced smaller errors.

Actually, Gupta and Cordery used a set of 14 couplings
their calculations, but we have only taken 12 into accoun
our comparison because the additional two couplings w
outside our largest neighborhoods. Although there is g
overall agreement between our results and those of G
and Cordery, there are also significant differences that

TABLE III. The 6-coupling constants calculated by Swends
and by Brandt-Ron~BR! for the first renormalized level.

Type of First renormalized
interaction level

012 Swendsen BR
345 (322) (1282)
678

01 0.3643~6! 0.363457~9!

04 0.0814~8! 0.081449~7!

02 20.0068(2) 20.007091(6)
05 20.0038(3) 20.004396(3)
0134 20.0077(6) 20.008825(7)
1357 0.0026~5! 0.002650~4!
06612
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much larger than the statistical errors of each calculation.
example, the nearest-neighbor coupling with a 6-coupl
truncation has the value 0.363 457~9!, while the 12-coupling
truncation gives the lower value of 0.351 436~8!. The Gupta-
Cordery result from a 14-coupling truncation gives a va
that is shifted to 0.353 58~10!, even though the values of th
additional couplings were smaller than this shift. This patte
of general agreement but with deviations that greatly exc
the statistical errors of each calculation is repeated for all
couplings in the table. The most extreme deviation is that
the 1357 four-spin interaction, for which the sign of the co
pling constant changes between the 6-coupling trunca
and either the 12-coupling~this work! or 14-coupling~GC!
truncations.

An advantage of our approach for calculating renorm
ized coupling constants is that we are able to find sta
results for larger sets of couplings than with either t
Swendsen or the Gupta-Cordery approaches. This enable
to extend the investigation of the effects of truncation
perform a calculation with 21 couplings, as shown in Tab
V. These 21 couplings represent the complete set of c
plings that are consistent with the 20-site neighborho
shown in Fig. 1. There is again good general agreement w
the 12-coupling truncation, but significant shifts in the ind
vidual values. The nearest-neighbor coupling constant is n
0.353 112~14!, which differs from the 12-coupling truncatio
result in the third digit, even though the added couplings
of much longer range and very weak. Our general conclus
is that truncated approximations are very sensitive to
number of operators used, even when the neglected oper
have very small coupling constants associated with th
This casts some doubt on the ultimate reliability of any d
termination of a set of renormalized couplings. The gene
picture of the renormalized couplings is probably correct,
the explicit values calculated are probably not nearly as
curate as the statistical error might lead one to believe.
TABLE IV. The 12-coupling constants calculated by Gupta-Cordery~GC! and by Brandt-Ron~BR! for
the first and the second renormalized levels.

Type of First renormalized Second renormalized
interaction level level

012 GC BR GC BR
345 (1282) (1282) (1282) (1282)
678

01 0.35358~10! 0.351436~8! 0.34608~24! 0.340138~20!

04 0.07488~10! 0.076717~5! 0.08845~23! 0.089627~18!

02 20.00758(9) 20.008779(11) 20.00929(22) 20.010948(9)
05 20.00618(7) 20.006560(5) 20.00700(14) 20.007155(5)

0134 20.01522(9) 20.014245(8) 20.01895(21) 20.017328(9)
1345 0.00760~4! 0.006493~3! 0.00733~10! 0.006018~7!

1357 20.00582(7) 20.004410(4) 20.00524(17) 20.003119(16)
0457 0.00289~4! 0.003399~4! 0.00286~9! 0.003186~5!

0123 0.00152~3! 0.001520~3! 0.00194~7! 0.001731~3!

0145 0.00101~4! 0.001537~4! 0.00156~10! 0.002041~7!

0157 20.00107(3) 20.001377(2) 20.00112(6) 20.001422(6)
0247 0.00040~4! 0.000424~4! 0.00068~9! 0.000580~5!
8-5
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VI. INTERNAL CONSISTENCY OF RESULTS

Keeping in mind that any truncation inevitably introduc
some systematic error that would produce discrepancies
tween the predictions of the approximate Hamiltonian a
the measured values of theP1’s, we have looked at the
systematic changes inF, the cost function defined in Sec. IV
Eq. ~11!.

Using only the 6-coupling constants shown in Table III
determined by our method, we find that the value ofF is
0.000 16, so that discrepancies between the data and the
dictions of this truncated Hamiltonian are clearly meas
able. Even so, the deviations from the measured values o
P1’s lie in the fourth significant digit.

When we improve the truncation by using the 12 co
plings determined by our method, which are shown in Ta
IV, we find that the value ofF is only 0.000 002 8. Further
more, when we use the 21-coupling set shown in Table
the value ofF is reduced to 0.000 002 3.

We have also investigated the second level of renorm
ization with the couplings shown in Table IV. The value ofF
for these 12 couplings is 0.000 003 4, which is close to
value of 0.000 002 8 for the same truncation in the first le
of renormalization, as expected.

As another test of consistency, we investigated a seque
of growing neighborhoods to analyze a 13106 configuration
simulation of a 1282 lattice. Table VI shows the effect on th
cost function when the size of the neighborhood is increas
Although the first row of the table corresponds to an extre
truncation, the cost function turns out to be artificially lo
because there are only twoP1’s to be fit by the single cou-
pling. As the neighborhoods grow, the number ofP1’s in-
creases much more rapidly than the number of coupling
the effective Hamiltonian. For the eight-spin neighborho
the effect of having to fit more parameters dominates, bu
the neighborhoods become larger, the great improvemen
the truncation approximation is the determining factor t
drives the value of the cost function down rapidly.

TABLE V. The complete set of 21-coupling constants calc
lated by Brandt-Ron~BR! for the first renormalized level.

Type of First renormalized Type of First renormalize
interaction level interaction level~cont.!

012 BR 012 BR
345 (1282) 345 (1282)
678 678

01 0.353112~14! 0247 0.000679~4!
04 0.076058~12! 0127 20.000580(5)
02 20.008700(13) 0167 20.000493(4)
05 20.005993(6) 0135 0.000138~6!
0134 20.015290(18) 0156 20.000317(2)
1345 0.006555~5! 012345 0.000185~4!
1357 20.004809(4) 013457 0.000050~3!
0457 0.003096~5! 012347 0.000293~2!
0123 0.001338~4! 012357 20.000088(3)
0145 0.000992~4! 014567 0.000191~3!
0157 20.001034(2)
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Another way of checking on the consistency of our resu
is simply to compare the individualP1’s with the predic-
tions of our calculated couplings. In Tables I and II, we ha
shown such a comparison for the leading 12P1’s, which
represent over 50% of the observations of a neighborho
The columns marked ‘‘BR-12’’ contain the predictions fo
the P1’s from the sets of 12-coupling constants for both t
first and second levels of renormalization. Discrepancies
be clearly seen between the measured and predicted va
However, comparison with the Gupta-Cordery results p
sented in the same table shows that there has been subst
improvement. A further improvement is seen for the fi
renormalized system by calculating theP1’s from the 21-
coupling constants, the column marked ‘‘BR-21.’’ Agai
since the differences are quite small, we conclude that
calculated couplings provide a good approximation for
Hamiltonian.

VII. DYNAMICAL SYSTEMS

To present our results for dynamical systems, it will
useful to consider a specific example in some detail.
have performed extensive simulations of non-Hamilton
dynamics on a 333 lattice with periodic boundary condi
tions. We used the nearest-neighbor dynamics introduce
Eq. ~3!, with u25u450.9, which cannot be represented by
nearest-neighbor Hamiltonian. Because the system is
small, we were able to make a very long run of 108 MC
sweeps to calculate theP1

8 table for the eight-spin neighbor
hood in the steady state.

As a first consistency check, we then did a new simulat
on the same lattice using thisP1

8 table. Naturally, this new
simulation satisfies detailed balance, although the orig
simulation did not. TheP1

8 table measured from the new
simulation was identical to the original one within the sm
statistical errors.

Next, we used the method described above to calcu
the 12-coupling constants that fit on a 333 lattice from the
measuredP1

8 table. Because this is a complete set with
truncation, the cost function was zero to within the numeri
accuracy of the calculation. As a further check on these
sults, we also solved an overdetermined set of linear eq
tions for the couplings and found a solution that matched
one obtained by minimizing the cost function.

This immediately demonstrates that we can have two
ferent dynamics that lead to the same steady state, e
though one is clearly non-Hamiltonian and the other is ba

- TABLE VI. The cost functionF calculated form-spin neigh-
borhoods (m54,8,12,20) for the first renormalized level.

m Number of Number of F
neighborhoods coupling constants

4 2 1 0.000021
8 24 3 0.000132
12 304 5 0.000018
20 80384a 21 0.0000023

aNot all distinct.
8-6
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on a Hamiltonian. This shows that the distinction betwe
Hamiltonian and non-Hamiltonian systems lies completely
the dynamics, and is not reflected in some property of
statics.

From a simulation of dynamics that clearly depends o
on nearest neighbors, but is not describable by a nea
neighbor Hamiltonian, we obtained an equilibrium distrib
tion that is described by a longer-range Hamiltonian.

We have confirmed these observations with more gen
tests. On a 642 lattice, we have used the nearest-neighb
non-Hamiltonian dynamics withu2511/12 and u450.9.
These values were chosen because the effective Hamilto
for the 12-spin neighborhood is close to that obtained fr
the renormalization of a nearest-neighbor Ising model
criticality. We also looked at a two-temperature model,
which the coupling constant for each update was rando
chosen to be eitherK50.45 or K50. The values obtained
for the five couplings that fit in this neighborhood, alon
with the corresponding values of the cost function, a
shown in Table VII for all of these models.

It can be seen from this table that, although the coupli
for the u22u4 model fall off with distance, they are stil
larger than those for the renormalized Hamiltonian. This p
tern is supported by the values of the cost function, which
larger for theu22u4 model. This gives us the somewh
surprising result that a model with explicitly neares
neighbor dynamical interactions corresponds to a long
range Hamiltonian than a renormalized Ising model.

By contrast, the two-temperature model corresponds
nearly nearest-neighbor Hamiltonian with a very small va
for the cost function, indicating that the more distant co

TABLE VII. The 5-coupling constants calculated fromP1
12 ~on

a 64364 lattice! and the corresponding values of the cost funct
F for three different dynamics.

Type of u2511/12 First renormalized K50.45
interaction andu450.9 level orK50

012 MC RG MC
345 (642) (1282) (642)
678

01 0.36332 0.35623 0.15732
04 0.05797 0.05658 0.00106
02 0.02708 20.01371 0.00055
0134 20.00535 20.01191 20.00015
1345 20.03613 0.00971 20.00169

F 0.000576 0.000018 0.0000077
M
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plings are also very small. This is consistent with the kno
result that this model is in the same universality class as
Ising model.

In summary, we have shown by explicit example how t
steady-state distribution for a nearest-neighbor n
Hamiltonian dynamics is indistinguishable from an equili
rium distribution for a longer-range Hamiltonian. It is nat
rally an interesting question to ask whether we can find
short-range non-Hamiltonian dynamics for a longer-ran
Hamiltonian, such as the renormalized Ising Hamiltonian
count of the number of parameters available for each
scription suggests that this is feasible. It would also be in
esting to know if a nearest-neighbor Hamiltonian can be r
resented by a longer- but still finite-ranged non-Hamilton
dynamics. Our results suggest that this is also possible,
no example has yet been constructed.

VIII. CONCLUSIONS

We have shown how the Brandt-Ron representation
be used to calculate consistent sets of renormalized coup
constants. Furthermore, since the Brandt-Ron representa
is very general, it can be used to determine whether coup
constants calculated with any method are consistent with
data obtained for a large set of neighborhoods. For the c
considered, the two-dimensional Ising model with a 232
majority-rule renormalization-group transformation, w
found that good approximations could be obtained with r
sonably small truncation errors.

On the other hand, we also showed that truncations
have a much larger effect than is usually assumed. Add
couplings can produce significant changes in all other c
plings, even when the new couplings have very small am
tudes.

We have also shown that the distinction between Ham
tonian and non-Hamiltonian systems lies entirely in the d
namics. There is no essential difference in the static distri
tion between steady state and thermal equilibrium.
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