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Calculation of effective Hamiltonians for renormalized or non-Hamiltonian systems
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We develop a method for calculating renormalized Hamiltonians based on the Brandt-Ron representation of
renormalization-group transformations. Our approach allows us to make a stable calculation for larger sets of
renormalized coupling constants than either the Swendsen or the Gupta-Cordery methods, thus reducing the
effects of truncation in renormalization-group calculations. The generality of the Brandt-Ron representation
also makes it suitable for analyzing a broader class of models including driven diffusive systems. Another
advantage of our approach is that it contains internal criteria that provide information on the error involved in
truncation approximations.
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[. INTRODUCTION whether that Hamiltonian has convenient properties for use
in further analysis. For example, to be useful for an RG
In the renormalization-groufRG) theory of critical phe- analysis, a renormalized Hamiltonian should be short-
nomena, the determination of critical properties is reduced téanged. One model for which we have done calculations
the calculation of trajectoriegsequences of renormalized turns out to be short-ranged, while others are known to con-
Hamiltoniang near a fixed point of the renormalization- tain long-ranged couplings]. . .
group transformation. Although some methods of computa- 10 introduce our approach, consider the Ising model of
tion avoid the problem of directly calculating the renormal- SPIns on a lattice that take on the valuestdf and—1. The
ized Hamiltonians to obtain critical exponefitd, an explicit ~ Hamiltonian for such a model is usually written in the form
calculation is required for complete information. For Monte
Carlo renormalization-groufMCRG) calculations, several _ _
. H=20 K;S;, (1)
methods have been created for this purpfize In 1983, .
Swendser{3] used a comparison between two methods of
calculating correlation functions, one of which explicitly where theS’s are various products of the spins. For ex-
used the values of the renormalized couplings. Since thegmple, the nearest-neighbor operator is given by
gave the same answers only when the correct renormalized
couplings were used, this provided a method for determining
their values. In 1984, Gupta and Cordd#j developed a Snn:<§> SjSk @
very elegant approach, which had several advantages over '
Swendsen’s technique. Their simulation involved both theq the sum runs over all nearest-neighbor pairs.

original anql the renprmalizeq spins in a novel ensemble, and Although the Hamiltonian representation appears to be
all correlation functions vanished when they had found th,ery general, it is easy to demonstrate that it is insufficient to
correct renormalized couplings. represent all dynamical interactions. Consider a translation-
Despite the successes of these two approaches, they stlff; jnyariant, two-dimensional model of Ising spins with no
have limitations on the number of couplings that can be calineractions extending beyond the nearest neighbors. Let the
culated and the accuracy that can be attained. In this pap&tongitional probability distribution of any chosen spin de-
we introduce a different approach to the problem, which al,eng only on the values of its four neighboring spins. Let the

lows us to compute more.interactions with higher accuracyyahapility of the central spin taking on the valdel be
than either of the two earlier approaches.

" i ; - ) given by
In addition to improving the calculation of renormalized
Hamiltonians within the context of renormalization-group Uy if S=4
theory, our method also allows us to investigate non- .
Hamiltonian dynamical systems from an unusual viewpoint. Uz if §=2
Since the static properties of non-Hamiltonian dynamical P4 (s1,5,83,5,) =4 1/2 if S=0 (3)

systems can be analyzed directly with our methods, we can o
: . . (1-uy) if §S=-2

calculate thgseemingly paradoxicaHamiltonian represen- _

tation of non-Hamiltonian systems. There is actually no con- (1—uy) if S=-4,

tradiction or paradox involved in these statements. The static

properties of any dynamical system can always, in principleyhere S=E|4zls| . In general,u, andu, can take on any

be described by a Hamiltonian. It is a separate question as tmlues between 0 and 1. However, a Hamiltonian description
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of this model is restricted to the nearest-neighbor sum given 21 20 9 13 22

in EqQ. (2), with a single coupling constamit. The values of

u, andu, are then given by 19 5 1 6 14
up=[1+exp—2nK)] !, n=24 (4) 12 4 s, 2 10

and they are not free to vary independently. For given values 18 8 3 7 15

of u, andu,, the model can be represented by a Hamiltonian

if and only if there exists a value &€ that reproduces those 24 17 11 16 23

values through Eq4).
Note that a Hamiltonian representation of this dynamics  FIG. 1. The 24-spin neighborhood surrounding a sgin
cannot be saved by introducing a four-spin interaction. Al-

though a four-spin interaction could be placed in the set of E{block spin configurations, using the majority-rule transfor-

central spin and its four neighbors, translational invariance ..
would de?nand that it also bg placed in other positions thai ation on 2X2. blocks, although the methoq can be used
would require the central spin to be influenced by spins Out_eq_ua]ly well with any other RG t_ransformfamon._For every
side this group, contradicting the assumptions of the modef3P'IN N EVery generated fe”OTma",Z?d configuration, the sur-
As we will show below, the Brandt-Ron representationround'ng n.e|ghborhood was identified and thg accumulated
[6] is more general than the Hamiltonian representation, angumber of its total occurrences and that for which the central
is easily able to deal with non-Hamiltonian dynamics with- SPin was+1 were updated. The desirg?l} values easily
out further approximation. This capability will be used to follow.
analyze such systems in future work. The P, table provides a very general representation of
In the course of analyzing the renormalized configura-the interactions. For example, there are a total of 314 distinct
tions, we are also able to test the consistency of sets of renoneighborhoods on the nearest 12 sites shown in Fig. 1. How-
malized coupling constants previously generated by Swencever, there are only five terms in the most general Hamil-
sen and Gupta-Cordery, as well as developing a differenfonian that can be defined within the limits of these 12 sites.

method for calculating renormalized coupling constants from |n the rest of the paper, most of the calculations will refer

the Brandt-Ron representation. to the sites in a 20-spin neighborhood shown in Fig. 1.
Brandt and Ron used a total of 80 384 neighborhoods in their

Il. BRANDT-RON REPRESENTATION analysis of the renormalized interactions of the two-

OF INTERACTIONS dimensional Ising model simulated at the critical point where

o i . K=0.440686 8. This large number of neighborhoods comes
The essential idea behind the Brandt-Ron representatiofyy, the 314 12-spin neighborhoods, multiplied by tHe 2

is to describe the interactions between spins by calculatingjiterent arrangement of spin values on the additional eight
the conditional probab_lhty of given spin takln_g on the valye sites. For simplicity in programming, no symmetries were
of +1 when the explicit values of a set of neighboring Spinsse for the additional eight sites to reduce the total number
are specified. We shall follow the notation of Brandt and Ron¢ neighborhoods, which are not all distinct.
and_ call a specific set of ngighboring spi'n.s and their values a Naturally, different neighborhoods occur with differing
“neighborhood.” The conditional probability that the central ,oapilities. Table | lists a great deal of information for the
spin will take on the value of- 1, given the specific values 15 mast common neighborhoods, which together account for
Ofm the spins in its neighborhood, is denoted by ,yer 509 of the observations at the critical point. The col-
P(s1,S2, - - . ,Sm), wherem is the number of spins in the mp jabeled W gives the relative frequency of each neigh-
particular neighborhood under consideration. Since the set ¢forhood. These neighborhoods are all composed of mostly
sites in a neighborhood will be taken to have the symmetry,ositive spins. The left column identifies which spins out of
of the lattice,m may take on values of éhearest neighboXs  the 20-spin neighborhood shown in Fig. 1 take on the value
8 (nearest and second-nearest neighbdr3, 20, etc. Forall _ 1 opserve that none of the neighborhoods has more than
the cases we considen will uniquely determine the set of 4,0 spins out of 20 with the value-1 and that the most
sites in a neighborhood, while the explicit values taken on by.ommon neighborhood contains only positive spins, and oc-
those spins are necessary to complete the specification of s in nearly one-quarter of the measurements.
particular neighborhood. All r}eighb_orhoods th_at are rel_ated Since the specification of a neighborhood begins with the
by an exact symmetry operatigrotation, reflection, or spin  chgice of a finite set of spins, a truncation of the full set of
inversion are grouped together, since those related by rotarenormalized interactions is inevitable. If the error caused by
tion or reflection have identical values Bf! and those re- s truncation falls off rapidly as the set of spins used for the
lated by spin inversion simply chang@¥ to 1—PT . In the  neighborhoods is increased, the model is said to possess
example ofP% given in Eq.(3), all neighborhoods with three “near locality” in the terminology of Brandt and Ron. In
equal spins are grouped together, as are the two neighbatheir work, Brandt and Ron used a sophisticated algorithm
hoods with all spins up and all spins down. that constructed an appropriate set of growing neighborhoods
From a Monte CarloMC) simulation on a given fine for a given degree of accuracy during the course of a Monte
grid, Brandt and Ron generated a sequence of renormalize@arlo simulation6]. We will use their results for the set of
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TABLE I. The P, ’s of the first renormalized level obtained by Gupta-Cordg{) and by Brandt-Ron

(BR) for the 20-spin neighborhood shown in Fig. 1.

PHYSICAL REVIEW E 63 066128

Neighborhood First renormalized level
-1 at: GC BR BR-12 BR-21 w
0.97096(38) 0.970456(1) 0.970380(31) 0.9708Pb 0.2374
13 0.97094(34) 0.970420(2) 0.970362(27) 0.97@86p 0.1044
9 0.97046(33) 0.970332(3) 0.970240(26) 0.970BIp 0.0400
1 0.87045(88) 0.868889(6) 0.869444(68) 0.8681390 0.0323
5 0.95839(34) 0.956307(1) 0.957087(27) 0.956696 0.0301
6,13 0.95954(31) 0.958618(6) 0.958835(24) 0.958307 0.0168
1,5 0.83144(74) 0.829299(14) 0.828858(55) 0.828933 0.0104
9,13 0.97054(29) 0.970299(5) 0.970255(24) 0.970330 0.0104
9,14 0.97053(29) 0.970301(7) 0.970320(23) 0.970281 0.0104
9,15 0.97044(28) 0.970299(6) 0.970222(22) 0.970245 0.0104
9,16 0.97044(28) 0.970306(2) 0.970222(22) 0.970245 0.0104
13,14 0.97109(31) 0.970625(3) 0.970493(26) 0.970623)7 0.0083

20-spin neighborhoods and the values of the 80B84s  the algorithm used will affect the determination of the fre-
that they measured. quencies of observing each neighborhoag, rather than

Because Brandt and Ron provided data that demonstratee P 's.
near locality for these neighborhoods, we know that trunca- Given a model with a Hamiltonian representation de-
tion to 20-spin neighborhoods introduces a very small errorscribed by Eq(1), the P,’s can be calculated directly from
For example, consider the, 's for a sequence of neighbor- the values of the coupling constants using the equation
hoods of increasing size with all spins having the valug.
The values are P, =[1+exp(—2H(s))] 1, 5

4 _
P =0.967040 wheres s the set of spins that take on the values specified by
the neighborhood.

In Tables | and Il, we begin our comparison with the
Gupta-Cordery results. The neighborhoods are associated
with the 20-spin neighborhood shown in Fig. 1. For each
neighborhood, all spins are positive except for the spins at
the specified locations, which are negative. The columns la-
beled “GC” were generated from 12 out of the 14 Gupta-
Cordery coupling constants, using E§). We neglected the
two Gupta-Cordery coupling constants that fell outside the
The changes iR rapidly become smaller anis increased, range of our 20-spin neighborhoods. The columns labeled
with the difference between a 12-spin neighborhood and 4BR” were taken from the Brandt-Ron results.
20-spin neighborhood being only one part in°10his is Looking at the columns for the first renormalized level in
consistent with the assumption of near locality, and justifiesTable I, the similarity of the results from the Gupta-Cordery
the assumption that 20-spin neighborhoods are sufficient foand Brandt-Ron calculations is immediately apparent. How-
the purposes of this paper. ever, there is also a striking systematic difference between
the results in that every, generated from the Gupta-
Cordery couplings are systematically higher than those mea-
sured by Brandt and Ron. We conclude that Gupta and Cord-
ery succeeded in doing an excellent calculation of the

The data we will use for the , ’s are taken from the work effective renormalized couplings within their truncation, but
of Brandt and Ron. The particular results were generatethe overall strength of those couplings is systematically too
using three Wolff 7] cluster updates between each measurehigh, at least when the additional two couplings are ne-
ment of data from a configuration for510° measurements glected. These values for the renormalized couplings corre-
on a 128128 lattice. Three cluster flips were chosen be-spond to a model that is slightly off-critical hypersurface,
cause that corresponds roughly to flipping every spin in thavith too low an effective temperature. To test the possible
lattice once on average. It should be noted thatRhés are  effect of adding the two extra couplings specified by Gupta
local quantities that do not depend on the establishment aind Cordery, we have calculated the for a 24-spin neigh-
global equilibrium, which makes them particularly easy toborhood of all spins taking the value1 and obtained
calculate to high accuracy. Any critical slowing down due t00.971956. The corresponding Brandt-Ron result is

P8 =0.970422, P®—-P%=0.003382;
P12=0.970446, P'*—P8=0.000024;
P2°=0.970456, P2°-P'2=0.000010;

P24=0.970460, P2*—P?°=0.000004.

IIl. COMPARISON OF MEASURED P.’S
WITH MCRG CALCULATIONS
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TABLE Il. The P, ’s of the second renormalized level obtained by Gupta-Cor@8) and by Brandt-
Ron (BR) for the 20-spin neighborhood shown in Fig. 1.

Neighborhood Second renormalized level
-1 at: GC BR BR-12 w
0.97199(86) 0.969912(2) 0.969902(59) 0.2417
13 0.97187(76) 0.969888(6) 0.969870(52) 0.1060
9 0.97146(73) 0.969893(3) 0.969821(49) 0.0412
1 0.87806(186) 0.873739(5) 0.874432(122) 0.0333
5 0.95757(78) 0.953144(1) 0.954183(52) 0.0315
6,13 0.95929(71) 0.955914(7) 0.956248(49) 0.0166
1,5 0.83041(166) 0.824308(5) 0.824751(102) 0.0105
9,13 0.97153(65) 0.969901(6) 0.969872(44) 0.0103
9,14 0.97150(64) 0.969904(3) 0.969919(43) 0.0103
9,15 0.97135(63) 0.969902(7) 0.969789(42) 0.0103
9,16 0.97135(63) 0.969904(5) 0.969789(42) 0.0103
13,14 0.97189(69) 0.970073(9) 0.969920(48) 0.0085
0.970460, showing an even larger discrepancy. A similar 1

2
deviation was observed also for the 24-spin neighborhood of F=aM 4 (Hj_E_ KiSij) / [6H;]°, (7)
all spins+1 except one negative spin at site 13: Gupta and ) '

Cordery predicted 0.971733 while Brandt-Ron measureg,nere theK,'s are the desired coupling constants, Sgs
0.970 390. , , are the various products of spins evaluated forjtheneigh-
The columns in Table Il for the second renormalized levely o hood andsH, is the standard deviation @¢;, which is

are consistent with this interpretation. Again the Gupta-g|ated to the standard deviation ®f through the equation
CorderyP,’s are quite close to the Brandt-Ron values, but

are systematically too high. Since the deviation from critical-
ity corresponds to a relevant direction, the deviations in the
second renormalized level are expected to be larger, which is SinceP; is calculated by averaging the values of the cen-
observed to be the case. The larger statistical errors are d@i@l spin for each neighborhood, its error is governed by the
to the smaller grid size obtained after two RG transforma-binomial distribution, so that
tions.

Apart from the small deviations of the Gupta-Cordery

;OUpg?%s from (itr'tlcsl'ty’ thte tQOOd agreement'wnh the.whereMj is the total number of instances of neighborhgod
randt-ron results demonstrales an encouraging ConSlgnqared during the simulation. Since we have one neighbor-

:encyl. HIO\;ve\':re]r, for a molfe Zomple'i_e compa:|s<)tn, fwe n?ﬁ ood surrounding every spin in every configuration, the total
0 caijculate the renormalized coupling constants om ey, yper of occurrences of all neighborhoods is

measured® . 's. This will be done in the following sections.

SH;=(1/2[Pj(1—Pj)] '6P;. (8)

(6P))?=P;(1-P)IM;, 9

M=2, M;=CL? (10)
IV. CALCULATION OF COUPLINGS FROM P,’S i

In order to invert Eq.(5) to calculate the renormalized \yhereC is the total number of configurations ahd is the
couplings from theP,'s, we need to deal with the fact that ymper of spingand neighborhoodsn each configuration.
there are many morB.,’s than there are renormalized cou- Expressing this in terms of the relative frequency of each
plings. Our procedure will be to determine renormalized COUngighborhoodw; =M, /M, we arrive at the following ex-
plings by minimizing the sum of the weighted deviations of pression for the cost function:
the P, ’s calculated from Eq(5) from those measured by
Brandt and Ron. 2

For convenience, instead of using tRe’s directly, we 7::2. (Hj_zi Kiai) w;Pj(1=P;). 1D
define a cost function in terms of the quantities :
V. COMPARISON OF CALCULATED RENORMALIZED

Hj=—(1/2)In[(1-P))/P;], (6)
COUPLINGS WITH MCRG CALCULATIONS

where the index refers to theth entry in the corresponding All methods for calculating renormalized couplings nec-

P, table. This choice simplifies the minimization process toessarily involve some sort of truncation. To investigate the
merely solving a linear system of equations. Our cost funceffective truncation, we begin the comparison with the early
tion is then given by calculation by Swendsen involving a rather severe truncation
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TABLE llIl. The 6-coupling constants calculated by Swendsenmuch larger than the statistical errors of each calculation. For

and by Brandt-Ror{BR) for the first renormalized level. example, the nearest-neighbor coupling with a 6-coupling
truncation has the value 0.363 49y, while the 12-coupling
Type of First renormalized truncation gives the lower value of 0.351 486 The Gupta-
interaction level Cordery result from a 14-coupling truncation gives a value
that is shifted to 0.353 5&0), even though the values of the
012 Swendsen BR additional couplings were smaller than this shift. This pattern
345 (32) (128) of general agreement but with deviations that greatly exceed
678 the statistical errors of each calculation is repeated for all the

couplings in the table. The most extreme deviation is that for

01 0.36486) 0.3634519) the 1357 four-spin interaction, for which the sign of the cou-
04 0.08148) 0.0814497) pling constant changes between the 6-coupling truncation
02 —0.0068(2) —0.007091(6) and either the 12-couplinghis work or 14-coupling(GC)

05 —0.0038(3) —0.004396(3) truncations.

0134 —0.0077(6) —0.008825(7) An advantage of our approach for calculating renormal-
1357 0.00265) 0.0026504) ized coupling constants is that we are able to find stable

results for larger sets of couplings than with either the
Swendsen or the Gupta-Cordery approaches. This enabled us
to only 6-coupling constants. Table Il gives both Swend-to extend the investigation of the effects of truncation to
sen’s values for the couplings and our results for the samperform a calculation with 21 couplings, as shown in Table
truncation found by minimizing the cost functiqil) de- V. These 21 couplings represent the complete set of cou-
scribed in the preceding section. The overall agreement iplings that are consistent with the 20-site neighborhood
quite good, although the new results are much more accuratehown in Fig. 1. There is again good general agreement with
In all cases, the differences are within one or two standartdhe 12-coupling truncation, but significant shifts in the indi-
deviations of the original calculation. vidual values. The nearest-neighbor coupling constant is now

Table IV shows a similar comparison with a more ex-0.353 11214), which differs from the 12-coupling truncation
tended set of 12-coupling constants calculated by Gupta an@sult in the third digit, even though the added couplings are
Cordery. In addition to using more couplings than Swendseif much longer range and very weak. Our general conclusion
in their analysis, Gupta and Cordery also introduced an imis that truncated approximations are very sensitive to the
proved method that produced smaller errors. number of operators used, even when the neglected operators

Actually, Gupta and Cordery used a set of 14 couplings irhave very small coupling constants associated with them.
their calculations, but we have only taken 12 into account inThis casts some doubt on the ultimate reliability of any de-
our comparison because the additional two couplings wer&rmination of a set of renormalized couplings. The general
outside our largest neighborhoods. Although there is googicture of the renormalized couplings is probably correct, but
overall agreement between our results and those of Gupthae explicit values calculated are probably not nearly as ac-
and Cordery, there are also significant differences that areurate as the statistical error might lead one to believe.

TABLE IV. The 12-coupling constants calculated by Gupta-Cord&¢) and by Brandt-Ror{BR) for
the first and the second renormalized levels.

Type of First renormalized Second renormalized
interaction level level
012 GC BR GC BR
345 (128) (128) (128) (128)
678
01 0.3535810) 0.3514368) 0.3460824) 0.34013820)
04 0.0748810) 0.0767175) 0.08845%23) 0.08962718)
02 —0.00758(9) —0.008779(11) —0.00929(22) —0.010948(9)
05 —0.00618(7) —0.006560(5) —0.00700(14) —0.007155(5)
0134 —0.01522(9) —0.014245(8) —0.01895(21) —0.017328(9)
1345 0.0076(%) 0.0064983) 0.0073310 0.0060187)
1357 —0.00582(7) —0.004410(4) —0.00524(17) —0.003119(16)
0457 0.0028@1) 0.0033994) 0.002869) 0.0031865)
0123 0.0015®3) 0.0015203) 0.001947) 0.0017313)
0145 0.0010) 0.0015374) 0.0015610 0.0020417)
0157 —0.00107(3) —0.001377(2) —0.00112(6) —0.001422(6)
0247 0.0004®) 0.0004244) 0.000689) 0.0005805)
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TABLE V. The complete set of 21-coupling constants calcu- TABLE VI. The cost functionF calculated form-spin neigh-

lated by Brandt-RorfBR) for the first renormalized level. borhoods (n=4,8,12,20) for the first renormalized level.

Type of First renormalized  Type of  First renormalized m Number of Number of F

interaction level interaction levétont) neighborhoods coupling constants

012 BR 012 BR 4 2 1 0.000021

345 (128) 345 (128) 8 24 3 0.000132

678 678 12 304 5 0.000018

01 0.35311014) 0247 0.00067@1) 20 80384 21 0.0000023

04 0.07605812) 0127 —0.000580(5) aNot all distinct.

02 ~0.008700(13) 0167  —0.000493(4)

05 —0.005993(6) 0135 0.000168 Another way of checking on the consistency of our results
0134 —0.015290(18) 0156~ —0.000317(2) s simply to compare the individud®,’s with the predic-
1345 0.006556) 012345 0.000188) tions of our calculated couplings. In Tables | and II, we have
1357 —0.004809(4) 013457 0.00008) shown such a comparison for the leading R2’s, which
0457 0.003096) 012347 0.000292) represent over 50% of the observations of a neighborhood.
0123 0.001338}) 012357 —0.000088(3)  The columns marked “BR-12” contain the predictions for
0145 0.00099@) 014567 0.000198) the P, ’s from the sets of 12-coupling constants for both the
0157 —0.001034(2) first and second levels of renormalization. Discrepancies can

be clearly seen between the measured and predicted values.
However, comparison with the Gupta-Cordery results pre-
sented in the same table shows that there has been substantial
Keeping in mind that any truncation inevitably introducesimprovement. A further improvement is seen for the first
some systematic error that would produce discrepancies beenormalized system by calculating tie.’s from the 21-
tween the predictions of the approximate Hamiltonian anctoupling constants, the column marked “BR-21.” Again,
the measured values of thHe,’s, we have looked at the since the differences are quite small, we conclude that our
systematic changes if, the cost function defined in Sec. IV, calculated couplings provide a good approximation for the
Eq. (12). Hamiltonian.
Using only the 6-coupling constants shown in Table Il as
determined by our method, we find that the valuefofs VII. DYNAMICAL SYSTEMS
0.000 16, so that discrepancies between the data and the pre- _ o
dictions of this truncated Hamiltonian are clearly measur- 10 Present our results for dynamical systems, it will be
able. Even so, the deviations from the measured values of t¢seful to consider a specific example in some detail. We
P.’s lie in the fourth significant digit. have performed extenswe s.|mulat|.ons' of non—HamHtoman
When we improve the truncation by using the 12 Cou_c_iynamlcs on a X3 lattice Wlth periodic bou_ndary condi- _
plings determined by our method, which are shown in Tabldions. We_ used the nearest-ne|ghbor dynamics introduced in
IV, we find that the value ofF is only 0.000002 8. Further- Ed.-(3), with u,=u,=0.9, which cannot be represented by a
more, when we use the 21-coupling set shown in Table Vpearest—nelghbor Hamiltonian. Because the system is so
the value of F is reduced to 0.000 002 3. small, we were able to make a very long run of 1aC
We have also investigated the second level of renormalSWeeps to calculate ttfe?. table for the eight-spin neighbor-
ization with the couplings shown in Table IV. The value/of hood in the steady state.
for these 12 couplings is 0.000 003 4, which is close to the As a first consistency check, we then did a new simulation
value of 0.000 002 8 for the same truncation in the first levelon the same lattice using thRS table. Naturally, this new
of renormalization, as expected. simulation satisfies detailed balance, although the original
As another test of consistency, we investigated a sequensmulation did not. TheP® table measured from the new
of growing neighborhoods to analyze &1 configuration  simulation was identical to the original one within the small
simulation of a 128lattice. Table VI shows the effect on the statistical errors.
cost function when the size of the neighborhood is increased. Next, we used the method described above to calculate
Although the first row of the table corresponds to an extreméhe 12-coupling constants that fit on &3 lattice from the
truncation, the cost function turns out to be artificially low measured®® table. Because this is a complete set with no
because there are only tw, ’s to be fit by the single cou- truncation, the cost function was zero to within the numerical
pling. As the neighborhoods grow, the numberRof’s in-  accuracy of the calculation. As a further check on these re-
creases much more rapidly than the number of couplings isults, we also solved an overdetermined set of linear equa-
the effective Hamiltonian. For the eight-spin neighborhood tions for the couplings and found a solution that matched the
the effect of having to fit more parameters dominates, but asne obtained by minimizing the cost function.
the neighborhoods become larger, the great improvement of This immediately demonstrates that we can have two dif-
the truncation approximation is the determining factor thatferent dynamics that lead to the same steady state, even
drives the value of the cost function down rapidly. though one is clearly non-Hamiltonian and the other is based

VI. INTERNAL CONSISTENCY OF RESULTS
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TABLE VII. The 5-coupling constants calculated froR? (on  plings are also very small. This is consistent with the known
a 64x 64 latticg and the corresponding values of the cost functionresult that this model is in the same universality class as the

F for three different dynamics. Ising model.

- - In summary, we have shown by explicit example how the
Type of up=11/12  First renormalized ~ K=0.45 steady-state distribution for a nearest-neighbor non-
interaction  andi,=0.9 level ork=0 Hamiltonian dynamics is indistinguishable from an equilib-
012 MC RG MC rium distribution_ for a Ionger—range Hamiltonian. It is ngtu-
345 (62) (128) (642) rally an interesting question to ask yvhether we can find a
678 short-range non-Hamiltonian dynamics for a longer-range

Hamiltonian, such as the renormalized Ising Hamiltonian. A

01 0.36332 0.35623 0.15732 count of the number of parameters available for each de-
04 0.05797 0.05658 0.00106 scription suggests that this is feasible. It would also be inter-
02 0.02708 —0.01371 0.00055 esting to know if a nearest-neighbor Hamiltonian can be rep-
0134 —0.00535 —0.01191 —0.00015 resented by a longer- but still finite-ranged non-Hamiltonian
1345 —0.03613 0.00971 —0.00169 dynamics. Our results suggest that this is also possible, but
F 0.000576 0.000018 0.0000077 O example has yet been constructed.

VIIl. CONCLUSIONS

on a Hamiltonian. This shows that the distinction between

Hamiltonian and non-Hamiltonian systems lies completely inbe
the dynamics, and is not reflected in some property of th%O
statics.

We have shown how the Brandt-Ron representation can
used to calculate consistent sets of renormalized coupling
nstants. Furthermore, since the Brandt-Ron representation
. . . is very general, it can be used to determine whether coupling
From a S|mglat|on of dyngmlcs that cl.early depends onlyconstants calculated with any method are consistent with the
on nearest ne.|ghb.ors, but is r_10t descnbap_le _by a.ne_aresaéta obtained for a large set of neighborhoods. For the case
neighbor Hamiltonian, we obtained an equilibrium dIStrIbu'considered, the two-dimensional Ising model with &2
tion that is described by a longer-range Hamiltonian. ajority-rule renormalization-group transformation, we

¢ \tNe cr)\ave (é;frllfltrtmed theshe observgtlt(?]ns with mtore .gc:]rt;erq und that good approximations could be obtained with rea-
ests. On a 64lattice, we have used the nearest-neig orsonably small truncation errors.

non-Hamiltonian dynamics withu,=11/12 andu,=0.9.

criticality. We also looked at a two-temperature model, fortudes.

which the coupling constant for each update was randomly We have also shown that the distinction between Hamil-
chosen to be eithek =0.45 orK=0. The values obtained ,ian and non-Hamiltonian systems lies entirely in the dy-
for the five couplings that fit in this neighborhood, along amics There is no essential difference in the static distribu-

with the corresponding values of the cost function, are; . petween steady state and thermal equilibrium.
shown in Table VII for all of these models.

It can be seen from this table that, although the couplings
for the u,—u, model fall off with distance, they are still
larger than those for the renormalized Hamiltonian. This pat- Both authors would like to thank Achi Brandt and Beate
tern is supported by the values of the cost function, which isSchmittmann for helpful discussions and George Baker for
larger for theu,—u, model. This gives us the somewhat his perceptive comments. R.H.S. would like to thank Achi
surprising result that a model with explicitly nearest- Brandt and the Weizmann Institute for their hospitality and
neighbor dynamical interactions corresponds to a longersupport for the part of this work carried out during a visit to
range Hamiltonian than a renormalized Ising model. the Weizmann Institute. D.R. would also like to thank M.

By contrast, the two-temperature model corresponds to &alun for her valuable comments. This work was partially
nearly nearest-neighbor Hamiltonian with a very small valuesupported by a Research Grant from the Cemach and Anna
for the cost function, indicating that the more distant cou-Oiserman Research Fund.
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